Fourier Series & The Fourier Transform




What do we want from the Fourier Transform?

We desire a measure of the frequencies present in a wave.
This will lead to a definition of the term, the “spectrum.”

Plane waves have only
one frequency, ®. ———>»

Light electric field

Time

This light wave has many
«— frequencies. And the

frequency increases in

time (from red to blue).

Light electric field

Time

It will be nice if our measure also tells us when each frequency occurs.



Lord Kelvin on Fourier’s theorem

Fourier's theorem is not only one of the most
beautiful results of modern analysis, but it may
be said to furnish an indispensable instrument
In the treatment of nearly every recondite
guestion in modern physics.

Lord Kelvin




Joaeph Fourier, 31 Harch 1768-16 May 1030, [#y permission af che
Hi!.-ﬂu!.fl.{‘:qur.- .’lvfun,iripu!e de Grenobie.)

Fourier was
obsessed with the
physics of heat and
developed the
Fourier series and
transform to model
heat-flow problems.



Consider the sum of two sine waves (i.e., harmonic waves) of
different frequencies:

The resulting wave is periodic, but not harmonic.
Essentially all waves are anharmonic.




One term:
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Fourier Cosine Series

Because cos(mt) is an even function (for all m), we can write an even
function, f(t), as:

where the set {F_; m=0, 1, ... } is a set of coefficients that define the
series.

And where we’ll only worry about the function f(t) over the interval

(—m,m).



The Kronecker delta function




o0

1 E :
Fourier Cosine Series: (1) = ; F,, cos(mt)

m=0
To find F_, multiply each side by cos(m’t), where m’ is another integer, and integrate:

T

J‘ f(t)cos(mMt)dt = 1 Z j F . cos(mt) cos(m' t) dt
T

- 7T
T

_ 7z Ifm=m'
But. cos(mt) cos(m't) dt = _ = 76, .
0O Ifm=m' ’
: |
So: J- f(t)cos(m't)dt = — E F. 70y € only the m” = m term contributes
T
o m=0
Dropping the * from the m: f
F = f(t t) dt < yields the
n (t) cos(mt)
coefficients for
any f(t)!



Because sin(mt) is an odd function (for all m), we can write
any odd function, f(t), as:

o0

f(t) = %Z F’ sin(mt)

m=0

where the set {F’.; m=0, 1, ... } is a set of coefficients that define
the series.

where we’ll only worry about the function f(t) over the interval (—x,x).



o0

Fourier Sine Series: f(t)y = 1 E F'sin(mt)
T

m=0

To find F_, multiply each side by sin(m’t), where m’ is another integer, and integrate:

j f()sin(m't)dt = 1 E j F' sin(mt) sin(m't) dt
4 m=0
But: - -
_ , 7z Ifm=m'
j sin(mt) sin(m't) dt = _ = 7O, .
0O ifm=m' ’

—7T

So: 7% 1 =
j f()sin(m't)dt = — E F. 70, € onlythe m”=m term contributes
T
g =0

Dropping the ‘ fromthem: F' = j f (t) sin(mt) dt | € yields the coefficients
et for any f(t)!



f(t) = li F_cos(mt) +

7T m=0




We can plot the coefficients of a Fourier Series







The Fourier Transform

Consider the Fourier coefficients. Let’'s define a function F(m) that
incorporates both cosine and sine series coefficients, with the sine
series distinguished by making it the imaginary component:

Fm) = F —1F = j f(t)cos(mt)dt — 1 j f (t) sin(mt) dt

Let’s now allow f(t) to range from —oo to w0, so we’ll have to integrate
from —o to 0, and let's redefine m to be the “frequency,” which we’ll
now call w:

r _ The Fourier
F(w) = j (t) exp(—lot) dt Transform

F(w) is called the Fourier Transform of f(t). It contains equivalent
iInformation to that in f(t). We say that f(t) lives in the time domain,
and F(w) lives in the frequency domain. F(w) is just another way of
looking at a function or wave.



The Inverse Fourier Transform

The Fourier Transform takes us from f(t) to F(w).
How about going back?

Recall our formula for the Fourier Series of f(t) :
BN I~
ft) = — F cos(mt) + — F_sin(mt
(t ,,Z  cos(mt) 7,2 , sin(mt)

Now transform the sums to integrals from —o to «, and again replace
F.. with F(w). Remembering the fact that we introduced a factor of 1
(and including a factor of 2 that just crops up), we have:

Inverse

f(t) = iJ‘ F(w) exp(iot) dw Fourier
27T o

Transform




There are several ways to denote the Fourier transform of a
function.

If the function is labeled by a lower-case letter, such as f,
we can write:

f(t) - Fw)

If the function is labeled by an upper-case letter, such as E, we can
write:

E(t) > 7 {E(t)} o E(t) > E(w)

Sometimes, this symbol is
used instead of the arrow: 2



S(w)=| 7 {EW®)}[




Imagina
F{rect(t)} Component = 0

= sinc(a'2)




(0 fort < 0) exp(-at) fort > 0

Real part
Imaginary
part J‘







= 0 if Re{f(t)} is odd = 0 if Im{f(t)} is even
\X \X

Flw) = j Re{f (1)} cos(wt) dt + J- Im{f (1)} sin(wt) dt <« RelF(o)

= 0 if Im{f(t)} is odd - =0if Re{f(t)} IS even

o0

b j Im{ f (t)} cos(et) dt — j Re{f (1)) sin(@t) dt < 10
’ ? LA

Even functions of @ Odd functions of w







(0 ift=0

The Dirac delta function ot)=< .
01ft=0

It's best to think of the delta function as the limit of a series of
peaked continuous functions.

f_ () =m exp[-(mt)>]/Nn




T&(t) dt =1

—00

T5(t—a)f(t)dt: ]eé(t—a)f(a)dt: f(a)

T exp(xiot) dt =27 o (w)

—00

T exp[li(w—o)t] dt =27 (v — ")

—00




The Fourier Transform of &t) is 1.
—]— - o
-t _|_




The Fourier transform of exp(ia,t)

F{exp(iw,t)}
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Scale Theorem

The Fourier t f
ofa scaled functon fia: | [ 11 (D)} =F(w/a)/]a

Proof: F {f(at)} = J- f (at) exp(—lwt) dt
Assuming a > 0, change variables: u = at

F {f(at)}:]o f(u)exp(-lw[u/a])du/a

_ j f () exp(—i [@/a] u) du / a

— F(w/a)/a

If a <0, the limits flip when we change variables, introducing a
minus sign, hence the absolute value.



The Scale
Theorem
INn action

The shorter
the pulse,

the broader
the spectrum!




The Fourier

Transform of a f
t F
sum of two 4 6> &
t 10,

functions

F {at®)+bg@®);=

aF {T(t)j+0bF {g(t)]

t




Shift Theorem

The Fourier transform of a shifted function, f(t—a):

F { f(t— a)} = exp(—lwa)F (o)

Proof :

o0

F { f(t- a)} = I f (t—a)exp(—iwt)dt

—Qo0

Change variables: u=t-a

T f (u)exp(—lw[u +a])du

= exp(—lwa) ]2 f (u)exp(—iwu)du

= exp(—lwa)F (w)



Fourier Transform with respect to space

F(k)=[ f(x)exp(-ikx) dx A




The 2D Fourier Transform

FOUfxy)} = Flkok,)

= j I f(x,y) exp[-i(kx+ky)] dx dy

It f(x,y) = f(%) (), ?@{(W)}

then the 2D FT splits into two 1D FT's.

But this doesn’t always happen.



/ \ Al
There are many definitions of the .

"width" or “length” of a wave or pulse.

The effective width is the width of a rectangle whose height and
area are the same as those of the pulse.

Effective width = Area / height: (0)
At
1 e (Abs value is eff
Ateff = — j ‘ f (t)‘ dt unnecessary
f (O) o for intensity.)
0

Advantage: It's easy to understand.
Disadvantages: The Abs value is inconvenient.
We must integrate to * .




The rms pulse width At

The root-mean-squared width or
rms width:

T e —1/2
j t2f (t) dt

'ms o0

j f(t) dt

—00

Al

The rms width is the “second-order moment.”

Advantages: Integrals are often easy to do analytically.
Disadvantages: It weights wings even more heavily,
so it’s difficult to use for experiments, which can't scanto oo )






The Uncertainty Principle

The Uncertainty Principle says that the product of a function's widths
in the time domain (At) and the frequency domain (Aw) has a minimum.

Define the widths | =
assuming f(tyand At = W“f(t)‘ d  Aw = —O_HF(CO)\ do
F(w) peak at 0: 0) =, ().
I _ b F(0)
At > W_joof(t) dt = j f (t)exp(=i[0]t) dt = F0)

1 % 1 K _ 271(0)
Aw > F(O):[OF(C()) do = 0! F(w)exp(io[0]) do = £ 0)

(Different definitions of the widths and the
Fourier Transform yield different constants.)

or: |Aw At> 27z| |AvAt21|

Combining results:

o e
AwAt > 27 L F9)

E0) TXQ)




The Uncertainty Principle

For the rms width, Aw At = %

There’s an uncertainty relation for x and k: Ak Ax 2



