
Fourier Series & The Fourier Transform

What is the Fourier Transform?

Fourier Cosine Series for even 
functions and Sine Series for odd 
functions

The continuous limit:  the Fourier 
transform (and its inverse)

The spectrum

Some examples and theorems
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What do we want from the Fourier Transform?

We desire a measure of the frequencies present in a wave.  
This will lead to a definition of the term, the “spectrum.”

Plane waves have only 
one frequency, ω.

This light wave has many 
frequencies.  And the 
frequency increases in 
time (from red to blue).

It will be nice if our measure also tells us when each frequency occurs.
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Lord Kelvin on Fourier’s theorem

Fourier’s theorem is not only one of the most 
beautiful results of modern analysis, but it may 
be said to furnish an indispensable instrument 
in the treatment of nearly every recondite 
question in modern physics.

Lord Kelvin



Joseph Fourier, our hero

Fourier was 
obsessed with the 
physics of heat and 
developed the 
Fourier series and 
transform to model 
heat-flow problems.



Anharmonic waves are sums of sinusoids.

Consider the sum of two sine waves (i.e., harmonic waves) of 
different frequencies:

The resulting wave is periodic, but not harmonic.  
Essentially all waves are anharmonic.



Fourier 
decomposing 
functions

Here, we write a
square wave as 
a sum of sine waves.



Any function can be written as the
sum of an even and an odd function
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Let f(x) be any function.



Fourier Cosine Series

Because cos(mt) is an even function (for all m), we can write an even 
function, f(t), as:

where the set {Fm; m = 0, 1, … } is a set of coefficients that define the 
series.

And where we’ll only worry about the function f(t) over the interval 
(–π,π).
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The Kronecker delta function

,

1 if 
0 if m n

m n
m n

δ
=⎧

≡ ⎨ ≠⎩



Finding the coefficients, Fm, in a Fourier Cosine Series

Fourier Cosine Series:

To find Fm, multiply each side by cos(m’t), where m’ is another integer, and integrate:

But:                   

So: only the m’ = m term contributes

Dropping the ‘ from the m: 
yields the 
coefficients for 
any f(t)!
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Fourier Sine Series

Because sin(mt) is an odd function (for all m), we can write 
any odd function, f(t), as:

where the set {F’m; m = 0, 1, … } is a set of coefficients that define 
the series.

where we’ll only worry about the function f(t) over the interval (–π,π).
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Finding the coefficients, F’m, in a Fourier Sine Series

Fourier Sine Series:

To find Fm, multiply each side by sin(m’t), where m’ is another integer, and integrate:

But:                       

So: 
only the m’ = m term contributes

Dropping the ‘ from the m: yields the coefficients 
for any f(t)!
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Fourier Series

even component                     odd component

where

and
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So if f(t) is a general function, neither even nor odd, it can be 
written:



We can plot the coefficients of a Fourier Series

We really need two such plots, one for the cosine series and another 
for the sine series.
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Discrete Fourier Series vs.
Continuous Fourier Transform

Fm vs. m

m

Again, we really need two such plots, one for the cosine series and 
another for the sine series.

Let the integer 
m become a 
real number 

and let the 
coefficients, 

Fm, become a 
function F(m).

F(m)



The Fourier Transform
Consider the Fourier coefficients.  Let’s define a function F(m) that 
incorporates both cosine and sine series coefficients, with the sine 
series distinguished by making it the imaginary component:

Let’s now allow f(t) to range from  –∞ to ∞, so we’ll have to integrate 
from –∞ to ∞, and let’s redefine m to be the “frequency,” which we’ll 
now call ω:

F(ω) is called the Fourier Transform of f(t). It contains equivalent 
information to that in f(t). We say that f(t) lives in the time domain, 
and F(ω) lives in the frequency domain. F(ω) is just another way of 
looking at a function or wave.
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The Inverse Fourier Transform
The Fourier Transform takes us from f(t) to F(ω).  
How about going back?

Recall our formula for the Fourier Series of f(t) :

Now transform the sums to integrals from –∞ to ∞, and again replace 
Fm with F(ω).  Remembering the fact that we introduced a factor of i
(and including a factor of 2 that just crops up), we have:
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Fourier Transform Notation

There are several ways to denote the Fourier transform of a 
function.

If the function is labeled by a lower-case letter, such as f,  
we can write:

f(t) → F(ω)

If the function is labeled by an upper-case letter, such as E, we can 
write:

or: ( ) ( )E t E ω→ %( ) { ( )}E t E t→ Y

∩Sometimes, this symbol is 
used instead of the arrow:



The Spectrum

We define the spectrum, S(ω), of a wave E(t) to be:

2
( ) { ( )}S E tω ≡ Y

This is the measure of the frequencies present in a light wave.



Example:  the Fourier Transform of a
rectangle function:  rect(t)
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Example:  the Fourier Transform of a
decaying exponential:  exp(-at)  (t > 0)
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A complex Lorentzian!



Example:  the Fourier Transform of a
Gaussian, exp(-at2), is itself!
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The details are a HW problem!
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Fourier Transform Symmetry Properties
Expanding the Fourier transform of a function, f(t):
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The Dirac delta function

Unlike the Kronecker delta-function, which is a function of two 
integers, the Dirac delta function is a function of a real variable, t.
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The Dirac delta function

It’s best to think of the delta function as the limit of a series of 
peaked continuous functions.
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Dirac δ−function Properties
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ω

2πδ(ω)

The Fourier Transform of δ(t) is 1.
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The Fourier transform of exp(iω0 t)
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The function exp(iω0t) is the essential component of Fourier analysis.  
It is a pure frequency.
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The Fourier transform of cos(ω0 t)
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The Modulation Theorem:
The Fourier Transform of E(t) cos(ω0 t)
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Scale Theorem
The Fourier transform 
of a scaled function, f(at): { ( )} ( / ) /f at F a aω=F
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If a < 0, the limits flip when we change variables, introducing a 
minus sign, hence the absolute value.

Assuming a > 0, change variables:  u = at

Proof:



The Scale 
Theorem 
in action

f(t) F(ω)

Short
pulse

Medium-
length
pulse

Long
pulse

The shorter 
the pulse, 

the broader 
the spectrum!

This is the essence 
of the Uncertainty 
Principle!
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The Fourier 
Transform of a 
sum of two 
functions
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Shift Theorem
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Fourier Transform with respect to space

Y  {f(x)}  =  F(k)
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If f(x) is a function of position,

We refer to k as the spatial frequency.

Everything we’ve said about Fourier transforms between the t and ω
domains also applies to the x and k domains.
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The 2D Fourier Transform

Y  (2){f(x,y)}  =  F(kx,ky) 

=       f(x,y) exp[-i(kxx+kyy)] dx dy

If f(x,y) = fx(x) fy(y), 

then the 2D FT splits into two 1D FT's.  

But this doesn’t always happen.
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The Pulse Width

There are many definitions of the 
"width" or “length” of a wave or pulse.

The effective width is the width of a rectangle whose height and 
area are the same as those of the pulse.

Effective width ≡ Area / height:

Advantage:  It’s easy to understand.
Disadvantages:  The Abs value is inconvenient.

We must integrate to ± ∞.
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The rms pulse width

The root-mean-squared width or 
rms width:

Advantages: Integrals are often easy to do analytically.
Disadvantages:  It weights wings even more heavily,
so it’s difficult to use for experiments, which can't scan to ± )
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The rms width is the “second-order moment.”



The Full-Width-
Half-Maximum

Full-width-half-maximum
is the distance between the 
half-maximum points.

Advantages:  Experimentally easy.
Disadvantages:  It ignores satellite 
pulses with heights < 49.99% of the 
peak!

Also:  we can define these widths in terms of f(t) or of its intensity, |f(t)|2.
Define spectral widths (Δω) similarly in the frequency domain (t → ω).

t

ΔtFWHM

1

0.5

t

ΔtFWHM



The Uncertainty Principle
The Uncertainty Principle says that the product of a function's widths
in the time domain (Δt) and the frequency domain (Δω) has a minimum.

(Different definitions of the widths and the 
Fourier Transform yield different constants.)
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Combining results:

or:

Define the widths 
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F(ω) peak at 0:
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The Uncertainty Principle

For the rms width, Δω Δt ≥ ½

There’s an uncertainty relation for x and k: Δk Δx ≥ ½


