Problem 4

Geology – Physics 30

1. Logistic Map

a) Using the equation for the fixed point x^* in terms of s, $x^{*=1} - 1/s$, calculate the values for the fixed point x^* for the following values of s:

s = 1.0, 1.2, 1.5, 2.0, 2.3, 2.6, 3.0, 3.16

b) Using the formula for absolute value of slope that we discussed in class, slope(x) = s(1 - 2x), calculate the value for |slope| at each of the fixed points found in a).

2. Thinking about the equation for the Second Return Map:

$$\mathbf{x}_{n+2} = \mathbf{F}(\mathbf{x}_n)$$

For the Logistic Map $x_{n+1} = s x_n (1 - x_n)$, do the following:

a) The algebraic equation for the Second Return Map can be written as:

 $x_{n+2} = s y_n (1 - y_n)$ where $y_n = s x_n (1 - x_n)$

That is, first you calculate y_n from x_n , then from y_n you calculate x_{n+2} .

Use this equation to determine whether the 2 values $x_1 = .799456$, and $x_2 = .513044$ are fixed points for the Second Return Map for the value s = 3.20

b) The slope of the second return map is given by the expression:

slope =
$$s^2 - 2 s^2 (s+1) x_n + 6 s^3 x_n^2 - 4 s^3 x_n^3$$

Calculate the absolute value of slope at the two points x1 and x2 in a). What do these values imply about the stability of these fixed points?