Frequency-Magnitude Relations

Earthquakes
Moment (Richter) Magnitude

\[M = \frac{2}{3} \log_{10} W - 6.0 \]

\(W = \) Seismic Moment
\(= \) Energy Released

California-NV Region
\(b \sim 0.9 \)

\(\text{Slope} = -b \)

S&P 500 Quakes
\(M=4 \) means \(\sim 4\% \) move in SPX
(either up or down)

\[M_F = 100 \left| \log_e \frac{P_i}{P_{i-1}} \right| \]

\(P_i = \) Closing Price, Day \(i \)

Gutenberg–Richter Relation

Financial (Stock/Bond) Quakes

S&P 500
\(b \sim 0.25 \)

\(\text{Slope} = -b \)

Catalog: ANSS_2010-08-12.Ca-NV.29.0.42.0.Lat._127.-113.Long.catalog

Catalog: SPX_File.txt
Dynamics of Financial Markets

Investors are arrows:

\[\text{↑ Owns only Govt. bonds} \quad \text{↓ Owns only stocks} \]

\(\phi \) is the fraction of total money deployed in Govt bonds

\(f \) is the real Fed funds rate

Volatility \(V \) plays the role of “temperature”

For example, we might have \(V \propto (VIX) \)

Investors “interact” with neighbors, strength \(J \)

Market Potential \(U[\phi] \)
Transitions in Financial Markets

First order phase transitions – metastability, nucleation, hysteresis

\[U[\phi] = \varepsilon \phi^2 + \alpha \phi^4 - f \phi \]

\(f \): Real Fed funds rate
\(V \): Volatility \(\propto (VIX) \)
\(\varepsilon \propto (V - V_C) \)
Phase Transitions and the Markets

Before a 1$^{\text{st}}$ Order Phase Transition

Transition occurs via nucleation and growth of bubbles

Classical: Correlation lengths and times are small
Nonclassical: Correlation lengths and times $\rightarrow \infty$

Large fluctuations (volatility is high) – Ginzburg Criterion

Risk function (of bubble formation):

- Related to nucleation rate of bubbles,
- Lifetime in the metastable state is inverse of nucleation rate

Scaling (fat tail) exponents can be calculated
VOLATILITY & P500 (^VIX) - Chicago Options

Technical Analysis

VOLATILITY & P500 (Chicago Options)
Range: 1d 5d 1m 3m 6m 1y 2y 5y 10y
Moving Avg: 5 | 10 | 20 | 50 | 100 | 200
Indicators: MACD | MFI | ROC | RSI | Slope
Overlays: Bollinger Bands | Parabolic SAR
Compare: ^VIX vs

VOLATILITY & P500

Bust | Metastable Bust | Boom | Metastable Boom | Bust | Metastable Bust | Boom | Metastable Boom

© Yahoo!

Federal Funds Rate History
(Effective Rate 1966 - 2012)

Copyright 2013 MoneyCafe.com
Simple Phase Diagram for the Markets

- **Volatility**
 - **High**: High volatility
 - **Low**: Low volatility

- **Market Cycle**
 - **Boom**: High volatility, $f < 0$
 - **Bust**: High volatility, $f > 0$
 - **Metastable (?) Boom**: Low volatility, $f < 0$
 - **Metastable (?) Bust**: Low volatility, $f > 0$

- **Stimulative Monetary Policy**
 - Easier Credit – Higher Liquidity

- **Restrictive Monetary Policy**
 - Tighter Credit – Lower Liquidity

- **Boom**: Stocks are preferred.
- **Bust**: Govt bonds are preferred.
Attractor for the S&P 500: The dynamics are a bit more complex than a simple Ising model!

This is not random – there is structure here. Time interval = 1970-2012