
NEURONS, DYNAMICS
AND COMPUTATION

Brains have long been regarded as biological computers.
But how do these collections of neurons perform computations?

John J. Hopfield

The question "How does it work?" is the motivation of
many physicists. Condensed matter physics, chemical
physics and nuclear physics can all be thought of as
descriptions of the relation between structure and prop-
erties. The components of a biological system have func-
tional properties that are particularly relevant to the
operation of the system. Thus it is especially important
in biology to understand the relation between structure
and function. Such understanding can be sought at the
level of the molecule, the cell, the organ, the organism
or the social group.

The function of a nervous system is to do computa-
tions. Recognizing a friend, walking and understanding
a spoken sentence all involve computations. The analysis
of the nervous system presented here relates the biophys-
ics of nerve cells, statistical physics and dynamical sys-
tems to the way a biological "machine" computes.

I use the word "compute" here only in the very fuzzy
sense of performing a useful task of a kind that a digital
computer can also perform. For example, one can pro-
gram a digital machine to compare a present image with
a set of images generated from a three-dimensional rep-
resentation of the head of a friend, and thus in principle
the problem of recognizing a friend can be solved by a
computation. Similarly, the question of how to drive the
actuators on a robot given the present posture of the
robot and the desired state of dynamic balance is funda-
mentally a problem in classical mechanics, which can be
solved on a digital computer. While we may not know
how to write efficient algorithms for these tasks, such
examples do illustrate that one may usefully describe
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what the nervous system does as computation. However,
that one can use a digital computer to model the outcomes
of experiments done on a nervous system does not ipso
facto mean that the brain is a computer, since digital
computers can be used to model most physical systems.

For the purposes of this article, we view a computer
as an input-output device, with the input and output
signals in the same general medium or format. Thus in
a very simple digital computer, the input is a string of
bits (in time), and the output is another string of bits.
The computer produces a transformation on the inputs
to generate the outputs. Within this view, the brain is
a computer. For example, a million axons carry electro-
chemical pulses from the eyes to the brain. Similar
signaling pulses drive the muscles of the vocal tract.
When we enter a room, look around and say, "Hello,
Jessica," our brain is producing a very complicated trans-
formation from one parallel input pulse sequence coming
from the eyes to another parallel output pulse sequence
that results in sound waves being generated.

The idea of composition is very important in this
view of a computer. The output of one computer can be
used as the input for another computer of the same
general type, since both signals are in the same medium.
Within this view, a digital chip is a computer, and large
computers are built as composites of smaller ones. Simi-
larly, each neuron (see figure 1) is a simple computer,
and the brain is a large composite computer made of
neurons.

Computers as dynamical systems
A real, physical digital computer is a dynamical system
and computes by following a path in its space of physical
states.1 (See figure 2.) Its operation is most simply
illustrated for batch-mode computation, in which all the
inputs are supplied at the start of the computation (unlike
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interactive computation, in which inputs may continue
to arrive during the computation). The computer has N
storage registers, each storing a single binary digit. A
binary vector of Af bits, such as 10010110000. . . , specifies
the logical state of the machine at a particular time. This
binary state changes into a new state each clock cycle.
The transition map describing which state follows which
is implicitly built into the machine by its design. Thus
one can describe the machine as a dynamical system that
changes its discrete state in discrete time.

The user of the machine has no control over the
dynamics, which is determined by the state transition
map. The user's program and data and a standard
initialization procedure prescribe the starting state of the
machine. The motion of the dynamical system carries
out the computation. In a batch-mode computation, the
answer is found when a stable point of the discrete
dynamical system—a state from which there are no tran-
sitions—is reached. A particular subset of the state bits

Neurons are simple computers. Each neuron receives
inputs at synapses and computes an output that is
transmitted along its axon to as many as 1000 other
neurons. The brain may be regarded as a composite
computer made up of a network of neurons. (Adapted
from ref. 2.) Figure 1

(for example, the contents of a particular machine regis-
ter) will then describe the desired answer.

Batch-mode analog computation can be similarly de-
scribed with continuous time and state-space variables.
The idea of computation as a process carried out by a
dynamical system in moving from an initial state to a
final state is the same as in the discrete case. In the
analog case, one can think of the motion in state space
as describing a flow field, and computation is done by
moving with this flow from start to finish. (See figure
3.) The final state is typically a point attractor—a loca-
tion in the state space to which all nearby states will
evolve. (Of course real "digital" machines contain only
analog components. The digital description is only a
compact representation in fewer variables that contains
the essence of the continuous dynamics.)

One of the most important resources for intelligent
behavior is powerful associative memory, in which partial
and perhaps somewhat erroneous knowledge of a memory
can nevertheless give access to the complete memory. A
system whose dynamics in a high-dimensional state space
is dominated by a substantial number of point attractors
can be regarded as an associative memory: The location
of a particular point attractor can be obtained from partial
information (an inexact description of the attractor loca-
tion) by merely initializing the system in accord with the
partial information and allowing the dynamics to evolve
the state to the nearest attractor. For such a system to
be useful and biological it must be possible to insert
memories (new attractors) into the system by a biologi-
cally plausible algorithm. We will consider this in greater
detail below. Error-correction codes, used with data
transmission, can also be construed as attractors.

Computations more complicated than the recovery of
memories can also be directly formulated in terms of the
fixed points of dynamical systems. For example, when
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State of a digital computer follows a path
through its space of discrete states. In
batch-mode computation the path goes from
an initial state representing the program and
the data to a final stable state representing the
answer. Figure 2

a problem can be posed as an optimization, its solution
can also often be posed on a dynamical system for which
the stable (fixed) points are minima of the desired vari-
able. The location of the solution is found by following
a trajectory of motion to its end.

A simple dynamical model of neurobiology
Figure 1 depicts the anatomy of a "typical" neuron in a
mammalian brain.2 In gross terms, it has three regions:
dendrites, a cell body and an axon. Each neuron is
connected to approximately 1000 other neurons by struc-
tures called synapses. A nerve cell functions as an
input-output device. Inputs to a cell are made at syn-
apses on its dendrites or on the cell body. The cell
produces outputs that drive other cells lying at synapses
at the terminals of its axon. When considering a par-
ticular synapse, we call the cell producing the output the
presynaptic cell while the one receiving the input is
postsynaptic.

The interior of each cell is surrounded by a mem-

An analog computational system has a
continuous space of states. The state-space
flow field must be focused onto paths to
negate the effects of errors but is otherwise
similar to that of a digital system (see figure
2). Figure 3

brane of high resistivity and is filled with a conducting
ionic solution. Ion-specific pumps transport ions such as
K+ and Na+ across the membrane, maintaining an elec-
trical potential difference between the inside and the
outside of the cell. A cell carries out computations by
dynamic changes in the conductivity of particular species
of ions at synapses and elsewhere in the cell membrane.

A simple model3 captures in mathematical terms
much of the essence of what a compact nerve cell does.
Figure 4 shows the voltage difference u between the
inside and the outside of a simple neuron functioning in
a brain. The electrical potential is generally slowly
changing, but occasionally it changes very rapidly, pro-
ducing a stereotypical voltage spike of about 2 millisec-
onds duration. Such a spike is produced every time the
cell's interior potential rises above a threshold wthresh of
about -50 millivolts. After the spike the voltage resets
to a lower value uresetof about -70 millivolts. This "action
potential" spike is caused by a paroxysm of voltage-de-
pendent ion flows across the neuron membrane.

Except for the action potentials, the membrane con-
ductivity away from the synapses is approximately con-
stant. (We will return too the synapses shortly.) The
membrane is only about 75 A thick, so there is appreciable
capacitance C between the inside and the outside of the
cell. If an electrical current i(t) is injected into the cell,
the interior potential (except for the action potentials)
obeys

C
dt

- (u - u0)

R
(1)

where R is the resistance of the cell membrane and u0

is the resting potential to which the cell would drift in
the absence of an external current. For a typical neuron,
"o < "threshi s o u wiU decay to uQ when the injected current
vanishes. If i(t) is a large constant current ic, the cell
potential will change in an almost linear fashion between
u0 and «thresh- An action potential will be generated each
time uthresh is reached, resetting u to «reset. Neurons that
behave in this fashion are known as "integrate and fire"
neurons. The spiking shown in figure 4 is an experimental
example of the behavior of an integrate-and-fire neuron.

The time P between the equally spaced action poten-
tials is then roughly

P = C "thresh "reset
(2)

For small currents the leakage current through the re-
sistance R is important, and for small enough constant
currents the leakage current will prevent the cell from
firing at all. The black curve in figure 5 shows the firing
rate IIP as a function of current ic for a realistic cell.

We will take action potentials to be delta functions,
lasting a negligible time. They propagate at constant
velocity along an axon. The transmission is nonlinear,
but the shapes of the pulses are actively maintained.
When an action potential arrives at a synaptic terminal
of an axon, the terminal releases a neurotransmitter
(such as acetylcholine or glutamate), which in turn acti-
vates specific ionic conductivity channels in the postsyn-
aptic dendrite. For reasons including diffusion and
chemical inactivation, this conductivity pulse a(t) is not
a delta function but has nonzero duration. It can be
modeled as

(Tit) =
se

-tt-U/r
t<t0

t>t0
(3)

where s is the maximum conductivity of the postsynaptic
membrane in response to the action potential, and T is
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the time constant of the pulse. Each synapse from cell
j to cell k has its own particular maximum conductivity
skj. The conductivity is ion specific, and the current that
flows depends on the chemical potential difference Vllm

between the inside and the outside for that ion. Thus
for a synapse from cell j to cell k, an action potential
arriving on cell / s axon at time t0 causes a current

0 t<t0
t>t0

(4)

to flow into cell k. The parameter Skj = Vionsfc/- can have
either sign, depending on the sign of the free energy
difference driving the selected ion type. If S^ is positive,
the synapse is "excitatory" because it tends to excite the
neuron k to fire. Similarly, a negative Skj corresponds
to an "inhibitory" synapse.

An equation of motion can be obtained as follows:
For any neuron k, which fires action potentials at times
i* (n = 1, 2, 3, . . .), define the instantaneous firing rate to
be

fk(t) = (5)

In classical electrical circuit theory, the current flowing
into a capacitor as a function of time is a similar sum of
delta functions because of the discreteness of electrons.
The integral of fk(t) over a time interval yields the number
of action potentials occurring within the time interval,
and in this sense fk(t) is the instantaneous rate.

Differentiating equation 4 with respect to time yields

(6)

Similarly, for the total current ik into cell k one has

—7 = -~r + ^Skjfj(t) + sensory term (7)

where the "sensory term" is an additional term present
only for sensory cells. This equation, though exact, is
awkward to deal with because the times at which the
action potentials occur are given only implicitly through
equation 1.

Synapse evolution algorithms
The synaptic strengths Skj can also change with time,
both during the development of an immature nervous
system and as part of the learning and adaptation that
go on in a mature one. While several such changes are
seen in neurobiology, the most interesting variety is one
in which the synapse strength S/y changes as a result of
the roughly simultaneous activity of cells k and j . This
kind of change is needed if a nervous system is to "learn"
the association between two events. A synapse whose
change algorithm involves only the simultaneous activity
of the pre- and postsynaptic neurons and no other detailed
information (other than perhaps when to learn) is called
a Hebbian synapse.4

A simple version of such dynamics might be written

At = aikf.(t) - decay terms (8)

where a is a positive parameter. The "decay terms,"
perhaps involving ik and fr are essential if the system is
to forget old information. A nonlinearity or control proc-
ess is important to keep synapse strength from increasing
without bound. Also, the parameter a might be varied
by neuromodulator molecules that control the overall
learning process. The details of the neurobiology are not

CELL
POTENTIAL

-53 mV •

-70 mV

200 milliseconds TIME-

Action potentials, spikes in the electrical
potential of the inside of a neuron, are
generated when the cell potential reaches a
threshold (-53 mV in this example),
discharging the cell. After discharging, the
cell resets to about -70 mV. When a constant
current is injected into the cell, action
potentials are generated at a regular rate.
(Adapted from data provided courtesy of
James Schwaber, Du Pont Experimental
Station, Wilmington, Delaware.) Figure 4

yet thoroughly understood, and equation 8 is only a
placeholder for a more adequate expression. Slightly
more complex synapse change rules of a Hebbian type
reproduce results of a variety of experiments on the
development of eye dominance and orientation selectivity
of cells in the visual cortex of the cat.5

The synapse evolution algorithm, whatever its form,
is one of the dynamical equations of the neural system.
The tacit view is that learning and development involve
synapse changes, whereas the dynamics of neural activity
is what performs a computation. This need not be the
case, however, and synapse modification should not be
ignored as a means of doing some kinds of computation.

A synapse change algorithm underlies the most
widespread application of artificial neural networks. A
feedforward network (one without closed-loop pathways)
is a trivial dynamical system, but such a network, with
an appropriate set of connections, can solve nontrivial
pattern classification problems.6 The computational
power in this case is embodied in finding the correct set
of connections, a process most often done by a highly
artificial synapse change dynamics that is quite unrelated
to biology. Even so, it is the dynamical method of
determining the connection strengths that results in a
useful feedforward network.

Classical neurodynamics
Neural network dynamics can be described in two ex-
treme limits. In one description, the "classical approxi-
mation," individual action potentials have little effect and
their precise timing is unimportant for coding informa-
tion. We can then adopt the point of view that deals
only with large numbers of action potentials in a statis-
tical fashion. This paradigm has been used in much of
neurobiology and neuromathematics. In an alternative
paradigm the precise relative timing of action potentials
arriving along different axons is very important, and the
detailed time intervals between action potentials on a
single axon are used to code significant information. I
will describe this paradigm later.

The classical approximation makes use of the fact
that there will be many contributions to the sum on the
right-hand side of equation 7 during a reasonable time
interval as a result of the high connectivity. (The sum
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INPUT CURRENT

Average firing rate of a neuron depends on the input
current. The approximation of "integrate and fire" without
leakage or saturation would give the blue straight line.
Leakage due to the cell's resistance results in the red curve,
while noise fluctuations smooth out the sharp break in the
curve at zero firing rate, producing the black curve.
Saturation effects in the mechanism that generates action
potentials set an upper limit on the rate. Figure 5

over j typically includes thousands of cells that may make
nonzero contributions.) In that case, it should be per-
missible to ignore the spiky nature of fft) and replace it
with a convolution of/}(£) and a smoothing function. In
addition, fj is presumed to be a function of ic, denoted
V(ic), when ic is slowly varying in time. What results is
like equation 7, but with hit) now a smooth function of

78
time, fft) =

di

Thus7

-jT = -— + 2^SkjV(ij(t)) + sensory term (9)

The main effect of the approximation is to neglect fluc-
tuation noise and to assume there are no strong correla-
tions between spike events. (A similar description could
be given in electrical circuits of the passage from consid-
ering discrete electrons to regarding charge as a continu-
ous variable.)

In many regions of the brain, the dominant connec-
tivity is quite short range, and signal propagation delays
are negligible. While propagation delays can easily be
introduced into equation 9, the mathematics of equations
with delays is rather more complicated.

Computation with fixed connections
With one set of parameters, equation 9 describes a Vax.
With another, it can mimic the electronics in a television
receiver. The set of all equations represented by equation
9 is far too general to have simple universal properties.
If computation is to be done by a convergence to point
attractors in the space of analog variables, one way of
achieving that end is to consider a restricted set of
networks that can be shown to converge to fixed points.
We will therefore examine networks whose motion can
be understood as the state's moving generally downhill
on an "energy function" (or Lyapunov function) that may
have a complicated landscape with many minima.

The simplest case that is sufficiently flexible to be
of interest is a symmetric network,8 defined by Sy = Sjr

The function

(10)x
k,j

h 0

where V"1 is the inverse of the function V, V, = V(ij) and
the current Ik in the third term on the right comes from
external or sensory inputs, can be shown to always decrease
under the equations of motion unless all variables have
stopped changing. Since E is bounded below, this implies
that the state will converge to the location of one of the
minima of this function. The dynamics is understood
through the minimum-seeking nature of equation 9.

While symmetric connections are not the usual case
in neurobiology (for example, an excitatory neuron can
receive inputs of either sign but can make only positive

connections to other neurons), there are various circum-
stances in which more complex and biological networks
are equivalent to symmetric networks. Even feedforward
networks can, by an appropriate transformation, be made
equivalent to symmetrically coupled networks.

The behavior of a symmetric system is easiest to
understand in the limit of high gain, where the sigmoid
response of the neurons (figure 5) approximates a step.
Then, under most circumstances, every stable state must
have each neuron either at maximal activity or zero
activity, and each such state lies at one of the corners of
a 2w-dimensional hypercube, where N is the number of
neurons. The stable-state problem is then isomorphic
with an Ising spin problem, but with each spin having
the possible values 0 and 1 (instead of the more usual
-1 and 1) and with the S/,j serving as the exchange
interactions in the Ising Hamiltonian. This connection
with spin systems, and in a limiting case to a spin glass,
has permitted extensive analysis of the stable states.9

(See the article by Haim Sompolinsky in PHYSICS TODAY,
December 1988, page 70.)

An associative memory can be constructed as follows.
If a "1" is defined to be a neuron firing at maximal rate,
and a "0" as a neuron not firing, in the high-gain limit
a memory is simply a state vector such as Vmem =
1,0,0,1,0,0,0,0,1, The synapse change

AS*,- « (2V*Bm-l)(2V4em-l) (11)

will make Vmem a new fixed point of the dynamics, that
is, a new memory. This synapse change is of the Hebbian
type. Networks of a more biological flavor, having fixed
patterns of inhibitory connections and low mean activity
rates and carrying memory information only in excitatory
connections, also function as associative memories.

One can design symmetric networks to find solutions
to many complex tasks that can be posed as minimiza-
tions.10 For example, such networks have found solutions
to the classical traveling salesman problem (in which a
salesman wishes to visit each member of a set of cities
once with the minimum amount of traveling) and to some
practical problems of circuit-board layout. Researchers
study such synthetic problems in part to learn about the
computational power that can be obtained from a single
convergence to a fixed point of a symmetric network. We
expect the highly fed-back neural circuitry of all complex
nervous systems to exhibit this computational power. We
might think of the single convergence to a fixed point as
the fundamental computing step of a brain, just as the
single clock cycle is the fundamental computing step of
a conventional digital machine. However, the high con-
nectivity of the neural system and the analog nature of
its convergence allow the performance of quite complex
tasks in a single step.

If we abandon the restriction of symmetry, the next
simplest system is the excitatory-inhibitory network.
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Midpoint between ears

Signal from left ear

^ Signal from right ear

Binaural localization of sound by an owl
depends on the timing of individual action
potentials. Sequences of spikes from the two
ears, representing the sound detected, travel
along antiparallel axons. The two streams of
spikes will tend to coincide and excite
neurons at a location (red) whose position
corresponds to the time delay between the
sounds detected at each ear. Figure 6

The neurons in such a network fall into two classes: One
has only excitatory outputs; the other has only inhibitory
outputs. Such networks can oscillate or even exhibit
chaos11 (in computer modeling), and it has been difficult
to gain enough mathematical control of them to see how
to use them for powerful computation. Oscillatory sys-
tems are now being intensely investigated, however, be-
cause oscillatory behaviors are commonly found in the
brain, for example, in the olfactory bulb and the neo-
cortex.

Action potential synchronization
The foregoing analysis was based on the idea that indi-
vidual action potentials are insignificant and that the
precise information about when particular action poten-
tials occur is generally not relevant. Information is
implicitly encoded in the short-time average of the num-
ber of action potentials generated by each cell. This
paradigm lies behind most of the studies of the response
of individual neurons in mammals. For example, a neu-
ron is called strongly responsive to a stimulus generated
by a moving bar of light if the neuron generates action
potentials at a high rate only during the presentation of
that stimulus. Detailed information about the relative
timing of different action potentials is ignored.

In some situations, however, the timing of action
potentials is very important to biological function. For
example, the arrival of a synchronized set of action
potentials on the many axons of the vagus nerve triggers
the contraction of the heart. The timing of this pulse is
essential to heart rhythm and blood pressure control.
Action potential timing also matters in the binaural
localization of a sound source by an owl. Each ear hears
a sound of the same form, but one sound is delayed with
respect to the other, and that delay determines the
azimuthal location of a sound source. The brain meas-
ures the time delay with an array of neurons that detect
coincidences between action potentials propagating with

finite velocity along antiparallel axons from the two ears.
(See figure 6.)

In addition, visual object perception involves a set of
specific computational problems that must be somehow
solved in the brain. One of these is related to how we
piece together the different parts of particular objects in
the visual field, so that an object is seen separated from
the background of other objects. The idea that what
moves together is a single object is one of the important
criteria that the brain seems to use. (If you have ever
wondered why the door edge behind the subject's head
is so plain in the snapshot yet was so invisible in the
viewfinder when you were taking the picture, the parallax
caused by your minor motions is a key element of the
answer.) Coherent oscillations or synchronized action
potentials may occur in neurons responsive to separated
but comoving edge elements of a single object. Ideas12

and experiments13 in this direction give impetus to theo-
retical work on the synchronization of action potentials
in integrate-and-fire neurons.

Most of the theoretical work has been done to try to
understand the range of phenomena occurring in simple
systems and has not yet focused on how such systems
can do useful computation. In the simplest case a group
of excitatory integrate-and-fire neurons are all connected
to one another ("all-to-all coupling"), and each coupling
is excitatory and of the same strength. When the exter-
nal or intrinsic current into each cell is the same (which
would result in equal firing rates of all the cells if there
were no connections between them) and the synaptic
current due to an action potential at t0 has the form

lit) =
0 t<t0

t>t0

(12)

then the coupling synchronizes the action potentials of
all the cells.14 If the system begins in an arbitrary state
of activity, it will evolve to a state of synchronized firing,
a cyclic attractor for the system. If the neurons have a
range of firing rates in the absence of connections, or if
the connections themselves are not uniform, a broader
class of behaviors occurs, including phase transitions to
the synchronous state and the breakup of the cells into
two classes, one group synchronized and one not.

In neurobiology, chemical events and molecular con-
figuration changes take place between the occurrence of
a presynaptic action potential and the ultimate current
injection into the postsynaptic cell. Therefore the meas-
ured synaptic currents do not rise as a step but increase
smoothly from zero. For this more realistic synaptic
model, in the presence of noise, but with equivalent firing
rates and equal all-to-all connections, there is a synchro-
nization-desynchronization phase transition as a function
of noise amplitude.15 The less realistic model of equation
12 retains a synchronized phase for all noise amplitudes.
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Fixed plate

Spring-block model of earthquakes is
somewhat analogous to models of sheets of
neurons that account for individual neuron
spikes. Springs connecting the blocks
correspond to synaptic connections between
neurons, while the slipping of a block
corresponds to the firing of a neuron.
Consequently the types of complex behavior
seen in the earthquake models can be
expected to recur in neurobiology. (Adapted
from ref. 1 7.) Figure 7

In an elementary short-time view of neural compu-
tation, the computation is performed by a convergence to
a point attractor of a dynamical system. The synchroni-
zation of spiking neurons is a special case of a more
general dynamical system whose motion converges to a
cyclic attractor. Richer dynamics with more complex
attractors should allow attractor networks to solve more
complicated problems than can be solved with simple
point attractors.

The phenomena displayed by coupled integrate-and-
fire neurons will be richer when the synaptic connection
patterns are more complex. Even the replacement of the
equal all-to-all coupling by a fixed near-neighbor synaptic
coupling in two dimensions (to represent aspects of a
sheet of cells such as occurs in the neocortex) greatly
changes the kinds of behavior that are found. This
problem, which does not seem to have been studied in
neurobiology, has in a limiting case a very close parallel
with the Burridge-Knopoff model16 of earthquake gen-
eration at a junction between tectonic plates. (This point
was jointly understood in discussions last spring between
Andreas Herz, John Rundle and me.) In the Burridge-
Knopoff model, the junction is represented by a set of
slider "blocks" that are connected to a moving upper plate
by springs and are dragged along the lower plate. (See
figure 7.) The motion of each slider is described by
stick-slip friction. Each slider is also connected by other
springs to its nearest neighbors. An earthquake is initi-
ated when one slider slips and triggers the motion of
other blocks. A "slip" event corresponds to an action
potential, the spring from plate to slider corresponds to
an external current from elsewhere into each cell, and
the springs between sliders correspond to synaptic con-
nections. The slipping is "self-organized"17'18 and pro-
duces a power-law distribution of earthquake magni-
tudes. While there is no exact correspondence with real
neurobiology in this limiting case, it does extend our ideas
of the kind of phenomena that can emerge from retaining
action potential timing in neurodynamical equations.

Simplicity and complexity
Digital machines and brains both carry out computation
by being dynamical systems. A very simple repre-
sentation of highly complicated neurobiology leads to a
description in terms of coupled nonlinear differential

equations. The equations presented here are a drastic
simplification of real biological neurons. Many features
could be added, including propagation delays, a position-
dependent intracellular potential and the use of intracel-
lular Ca2+ concentrations as dynamical variables. How
important are such omitted features?

Physics has often made use of huge simplifications
to get to the heart of issues. For example, conventional
models of magnetism usually omit many details of mul-
tispin interactions, magnetoelastic coupling and longer-
range interactions, and yet they capture much of the
essence of magnetic phenomena. Physicists are therefore
accustomed to ignoring inconvenient details.

Biology, being an evolutionary science, is different.
If some quirky detail of neurobiology is useful in an
important but special computation, that detail can be
selected for and improved by evolution. As a result, in
specific parts of the brain, particular details that are
generally negligible elsewhere can be of utmost impor-
tance. The highly simplified model dynamics described
in this article is thus far too impoverished to describe
how a brain operates.

Nevertheless, network computation with high connec-
tivity between analog elements is the means by which
large brains gain an intelligence lacking in small nervous
systems. The attractor behavior of equation 9 has proved
to be robust to noise and to changes such as the addition
of delays and action potentials. Even though the ele-
ments we have used are oversimplified abstractions, this
robustness gives us reason to believe that we are making
progress in understanding how networks of neurons and
synapses can carry out complex computations.
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