
Evolving Cellular Automata with Genetic Algorithms:
A Review of Recent Work

Melanie Mitchell
Santa Fe Institute

1399 Hyde Park Road
Santa Fe, NM 87501
mm@santafe.edu

James P. Crutch�eld1

Santa Fe Institute
1399 Hyde Park Road
Santa Fe, NM 87501
jpc@santafe.edu

Rajarshi Das
IBM Watson Research Ctr.

P.O. Box 704
Yorktown Heights, NY 10598
rajarshi@watson.ibm.com

To appear in Proceedings of the First International Conference on Evolutionary
Computation and Its Applications (EvCA'96).
Moscow, Russia: Russian Academy of Sciences.

Abstract

We review recent work done by our group on applying genetic algorithms (GAs) to the
design of cellular automata (CAs) that can perform computations requiring global coordi-
nation. A GA was used to evolve CAs for two computational tasks: density classi�cation
and synchronization. In both cases, the GA discovered rules that gave rise to sophisticated
emergent computational strategies. These strategies can be analyzed using a \computational
mechanics" framework in which \particles" carry information and interactions between par-
ticles e�ects information processing. This framework can also be used to explain the process
by which the strategies were designed by the GA. The work described here is a �rst step
in employing GAs to engineer useful emergent computation in decentralized multi-processor
systems. It is also a �rst step in understanding how an evolutionary process can produce
complex systems with sophisticated collective computational abilities.

Introduction

In our work we are studying how genetic algorithms (GAs) can evolve cellular automata
(CAs) to perform computations that require global coordination. The \evolving cellular
automata" framework is an idealized means for studying how evolution (natural or com-
putational) can create systems in which \emergent computation" takes place|that is, in
which the actions of simple components with local information and communication give
rise to coordinated global information processing. Insect colonies, economic systems, the
immune system, and the brain have all been cited as examples of systems in which such
emergent computation occurs. However, it is not well understood how these natural sys-
tems perform computations. Our ultimate motivations are both to understand emergent
computation in natural systems and to explore ways of engineering sophisticated emergent
computation in decentralized multi-processor systems. Previous papers on this topic in-
clude Mitchell, Hraber, and Crutch�eld 1993; Mitchell, Crutch�eld, and Hraber 1994; Das,

1also Department of Physics, University of California, Berkeley, CA 90720-7300

1

1 010 0 1 001 11t = 0

0 001 0 1 111 01t = 1

Lattice:

Rule table φ:
000 001 010 011 100 101 110 111
 0 0 0 1 0 1 1 1

neighborhood η:
output bit:

r = 1
Neighborhood η

Figure 1: Illustration of a one-dimensional, binary-state, nearest-neighbor (r = 1) cellular automaton
with N = 11. Both the lattice and the rule table � for updating the lattice are illustrated. The lattice
con�guration is shown at two successive time steps. The cellular automaton has spatially periodic boundary
conditions: the lattice is viewed as a circle, with the leftmost cell being the right neighbor of the rightmost
cell, and vice versa.

Mitchell, Crutch�eld 1994; Crutch�eld and Mitchell 1995; Das, Crutch�eld, Mitchell, and
Hanson, 1995, and Mitchell, Crutch�eld, and Das, 1996. (These papers can be obtained on
the World Wide Web URL http:==www.santafe.edu/projects/evca). Here we review work
that was �rst presented in these papers.

Cellular Automata

In this paper we describe work on one-dimensional binary-state cellular automata (CAs).
Such a CA consists of a one-dimensional lattice of N two-state machines (\cells"), each of
which changes its state as a function only of the current states in a local neighborhood.
(The well-known \game of Life," Berlekamp, Conway, and Guy 1982, is an example of a
two-dimensional CA.) As is illustrated in �gure 1, the lattice starts out with an initial
con�guration (IC) of cell states (0s and 1s) and this con�guration changes in discrete time
steps in which all cells are updated simultaneously according to the CA \rule" �. (Here we
use the term \state" to refer to the value of a single cell. The term \con�guration" will refer
to the collection of local states over the entire lattice.)

A CA's rule � can be expressed as a lookup table (\rule table," or \CA rule") that lists,
for each local neighborhood, the state which is taken on by the neighborhood's central cell
at the next time step. For a binary-state CA, these update states are referred to as the
\output bits" of the rule table. In a one-dimensional CA, a neighborhood consists of a cell
and its r (\radius") neighbors on either side. (In �gure 1, r = 1.) Here we describe CAs
with periodic boundary conditions|the lattice is viewed as a circle.

Cellular automata have been studied extensively as mathematical objects, as models of
natural systems, and as architectures for fast, reliable parallel computation (e.g., see Wolfram
1986 for an overview of these various roles). One-dimensional binary-state cellular automata

2

are perhaps the simplest examples of decentralized, spatially extended systems in which
emergent computation can be studied. In our project, a CA performing a computation
means that the input to the computation is encoded as the IC, the output is decoded from
the con�guration reached at some later time step, and the intermediate steps that transform
the input to the output are taken as the steps in the computation. The computation emerges
from the CA rule being obeyed by each cell. (Note that this use of CAs as computers di�ers
from the impractical, though theoretically interesting, method of constructing a universal
Turing machine in a CA; see Mitchell, Hraber, and Crutch�eld 1993 for a comparison of
these two approaches.)

Computational Tasks for Cellular Automata

Some early work on evolving CAs with GAs was done by Packard and colleagues (Packard
1988; Richards, Meyer, and Packard 1992). Koza (1992) also applied genetic programming
to evolve CAs for simple random-number generation.

Our work builds on that of Packard (1988). In preliminary work, we have used a form of the
GA to evolve one-dimensional, binary-state r = 3 CAs to perform a density-classi�cation task
(Crutch�eld and Mitchell 1995; Das, Mitchell, and Crutch�eld 1994) and a synchronization
task (Das, Crutch�eld, Mitchell, and Hanson 1995).

For the density classi�cation task, the goal was to �nd a CA that decides whether or not
the IC contains a majority of 1s (i.e., has high density). More precisely, we call this task
the \�c = 1=2" task. Here � denotes the density of 1s in a binary-state CA con�guration
and �c denotes a \critical" or threshold density for classi�cation. Let �0 denote the density
of 1s in the IC. If �0 > �c, then within M time steps the CA should go to the �xed-point
con�guration of all 1s (i.e., all cells in state 1 for all subsequent iterations); otherwise, within
M time steps it should produce the �xed-point con�guration of all 0s. M is a parameter of
the task that depends on the lattice size N .

Designing an algorithm to perform the �c = 1=2 task is trivial for a system with a central
controller or central storage of some kind, such as a standard computer with a counter register
or a neural network in which all input units are connected to a central hidden unit. However,
it is nontrivial to design a a small-radius (r � N) CA to perform this task, since a small-
radius CA relies only on local interactions. It has been argued that no �nite-radius, binary
CA with periodic boundary conditions can perform this task perfectly across all lattice sizes
(Land and Belew, 1995; Das, 1996), but even to perform this task well for a �xed lattice
size requires more powerful computation than can be performed by a single cell or any linear
combination of cells. Since the 1s can be distributed throughout the CA lattice, the CA
must transfer information over large distances (� N), and process information collected
from di�erent parts of the lattice. To do this requires the global coordination of cells that
are separated by large distances and that cannot communicate directly.

The need for such coordination is illustrated in �gure 2, in which we display the space-time
behavior of a \naive" hand-designed candidate solution for this task|the \majority" rule
�maj, in which the output bit for each 7-bit (r = 3) neighborhood is decided by a majority

3

0

Time

148

148Site0 148Site0

Figure 2: Space-time diagrams for �maj, the r = 3 majority rule. In the left diagram, �0 <
1

2
; in the right

diagram, �0 >
1

2
.

vote among the seven cells in the neighborhood. Figure 2 gives two \space-time diagrams,"
displaying the behavior of this rule on two initial conditions, one with �0 < 1=2 and the
other with �0 > 1=2. Here, lattice con�gurations are plotted over a series of time steps,
with 1s given as black cells and 0s given as white cells, and with time increasing down the
page. As can be seen, local neighborhoods with majority 1s map to regions of all 1s and
similarly for 0s, but when an all-1s region and an all-0s region border each other, there is no
way to decide between them, and both persist. Thus, the majority rule (which implements
a threshold on a linear combination of states) does not perform the �c = 1=2 task.

Instead, more sophisticated coordination and information transfer must be achieved. This
coordination must, of course, happen in the absence of any central processor or central
memory directing the coordination.

Evolving Cellular Automata with Genetic Algorithms

We used a genetic algorithm to search for r = 3 CA rule tables to perform the �c = 1=2
task. Each chromosome in the population represented a candidate rule table|it consisted
of the output bits of the rule table, listed in lexicographic order of neighborhood (cf. � in
�gure 1). The chromosomes representing rules were thus of length 22r+1 = 128. The size of
the rule space in which the GA worked was thus 2128|far too large for any kind of exhaustive
evaluation.

In our main set of experiments, we set N = 149, a reasonably large but still computation-
ally tractable odd number (odd, so that the task will be well-de�ned on all ICs). The GA
began with a population of 100 chromosomes chosen at random from a distribution that was

at over the density of 1s in the output bits. (This \uniform" distribution di�ers from the
more commonly used \unbiased" distribution in which each bit in the rule table is indepen-

4

dently randomly chosen. We found that using a uniform distribution considerably improved
the GA's performance on this task|see Mitchell, Crutch�eld, and Hraber 1994, for details).
The �tness of a rule in the population was computed by (1) randomly choosing 100 ICs that
are uniformly distributed over � 2 [0:0; 1:0], with exactly half with � < �c and half with
� > �c, (2) iterating the CA on each IC until it arrives at a �xed point or for a maximum
of M � 2N time steps, and (3) determining whether the �nal behavior is correct|i.e., 149
0s for �0 < �c and 149 1s for �0 > �c. The rule's �tness, F100, was the fraction of the 100
ICs on which the rule produced the correct �nal behavior. No partial credit was given for
partially correct �nal con�gurations.

A few comments about the �tness function are in order. First, the number of possible input
cases (2149 for N = 149) was far too large for �tness to be de�ned as the fraction of correct
classi�cations over all possible ICs. Instead, �tness was de�ned as the fraction of correct
classi�cations over a sample consisting of 100 ICs. A di�erent sample was chosen at each
generation, making the �tness function stochastic. In addition, like the initial CA population,
the ICs were not sampled from an unbiased distribution (i.e., equal probability of a 1 or a
0 at each site in the IC), but rather from a
at (\uniform") distribution across � 2 [0; 1]
(i.e., ICs of each density from � = 0 to � = 1 were approximately equally represented). This
uniform distribution was used because the unbiased distribution is binomially distributed
and thus very strongly peaked at � = 1=2. The ICs selected from such a distribution will
likely all have � � 1=2, the hardest cases to classify. In experiments using an unbiased IC
sample to calculate �tness, the GA was very rarely able to discover high-�tness CAs.

Our version of the GA worked as follows. In each generation, (1) a new set of 100 ICs
was generated, (2) F100 was computed on this set for each rule in the population, (3) CAs
in the population were ranked in order of �tness, (4) the 20 highest �tness (\elite") rules
were copied to the next generation without modi�cation, and (5) the remaining 80 rules for
the next generation were formed by single-point crossovers between randomly chosen pairs
of elite rules. The parent rules were chosen from the elite with replacement|that is, an elite
rule was permitted to be chosen any number of times. The o�spring from each crossover
were each mutated at exactly two randomly chosen positions. This process was repeated for
100 generations for a single run of the GA.

Our selection scheme, in which the top 20% of the rules in the population are copied
without modi�cation to the next generation and the bottom 80% are replaced, is similar
to the (� + �) selection method used in some evolution strategies (see B�ack, Ho�meister,
and Schwefel 1991). Selecting parents by relative �tness rank rather than in proportion to
absolute �tness helps to prevent initially stronger individuals from too quickly dominating
the population and driving the genetic diversity down early. Also, since testing a rule on
100 ICs provides only an approximate gauge of the rule's performance over all 2149 possible
ICs, saving the top 20% of the rules is a good way of making a \�rst cut" and allowing rules
that survive to be tested over di�erent ICs in succeeding generations. Since a new set of
ICs was produced every generation, rules that were copied without modi�cation were always
retested on this new set. If a rule performed well and thus survived over a large number of
generations, then it was likely to be a genuinely better rule than those that were not selected,
since it was tested with a large set of ICs.

5

CA (r = 3) Rule table (hex) P149,104 P599,104 P999,104

�maj 000101170117177f 0.000 0.000 0.000

0117177f177f7�f
�exp 0505408305c90101 0.652 0.515 0.503

200b0efb94c7c�7
�par 0504058705000f77 0.769 0.725 0.714

037755837b�b77f

Table 1: Rule tables and measured values of P
N,104 (�) at various N for three di�erent r = 3 rules. To

recover the 128-bit string giving the CA look-up table output bits, expand each hexadecimal digit (the �rst
row followed by the second row) to binary. The output bits are then given in lexicographic order starting
from the all-0s neighborhood at the leftmost bit in the 128-bit binary string. �maj (hand-designed) computes
the majority of 1s in the neighborhood. �exp (evolved by the GA) expands blocks of 1s. �par (evolved by the
GA) uses a \particle-based" strategy.

0

Time

148

148Site0 148Site0

Figure 3: Space-time diagrams for a \block-expanding" rule, �exp. In the left diagram, �0 < 1=2; in the
right diagram, �0 > 1=2. Both ICs are correctly classi�ed.

Results

In our initial experiments, three hundred di�erent runs were performed, each starting with
a di�erent random-number seed. We examined the �ttest evolved rules to understand their
computational \strategies" for performing the density classi�cation task. On most runs the
GA evolved a rather unsophisticated class of strategies. One example, a CA here called �exp
(for \expand"), is illustrated in �gure 3. This rule had F100 � 0:9 in the generation in which
it was discovered. Its computational strategy is the following: Quickly reach the �xed point
of all 0s unless there is a su�ciently large block of adjacent (or almost adjacent) 1s in the
IC. If so, expand that block. (For this rule, \su�ciently large" is 7 or more cells.) This
strategy does a fairly good job of classifying low and high density ICs under F100: it relies
on the appearance or absence of blocks of 1s to be good predictors of �0, since high-density
ICs are statistically more likely to have blocks of adjacent 1s than low-density ICs.

6

Similar strategies were evolved in most runs. On approximately half the runs, \expand 1s"
strategies were evolved, and on most of the other runs, the opposite \expand 0s" strategies
were evolved. These block-expanding strategies, although successful given F100 and N = 149,
do not count as sophisticated examples of emergent computation in CAs: all the computation
is done locally in identifying and then expanding a \su�ciently large" block. There is
no interesting notion of global coordination or information
ow between distant cells|two
things we claimed were necessary to perform well on the task. Indeed, such strategies
perform poorly under performance measures using di�erent distributions of ICs, and when
N is increased.

Mitchell, Crutch�eld, and Hraber (1994) analyzed the detailed mechanisms by which the
GA evolved such block-expanding strategies. This analysis uncovered some quite interesting
aspects of the GA, including a number of impediments that, on most runs, kept the GA
from discovering better-performing CAs. These included the GA's breaking the �c = 1=2
task's symmetries for short-term gains in �tness, as well as \over�tting" to the �xed lattice
size N = 149 and the unchallenging nature of the IC samples. The last point merits some
elaboration here.

The uniform distribution of ICs over � 2 [0; 1] helped the GA get a leg up in the early
generations. We found that computing �tness using an unbiased distribution of ICs made
the problem too di�cult for the GA early on|it was rarely able to �nd improvements to
the CAs in the initial population. However, the biased distribution became too easy for the
improved CAs later in a run (i.e., the low and high density ICs were very easily classi�ed);
these ICs did not push the GA hard enough to �nd better solutions. We are currently
exploring a \coevolution" scheme, in which the IC sample is itself subject to selection and
variation by the GA (cf. Hillis, 1990), in order to improve the GA's performance on this
problem.

Despite these various impediments and the unsophisticated CAs evolved on most runs, on
several di�erent runs in our initial experiment the GA discovered CAs with more sophisti-
cated strategies that yielded signi�cantly better performance across di�erent IC distributions
and lattice sizes than was achieved by block-expanding strategies. The typical space-time
behaviors of one such rule, here called �par (for \particle"), are illustrated in �gure 4.

The improved performance of �par can be seen in table 1, which gives the rule tables and
performances across di�erent lattice sizes for di�erent rules. The \performance" PN,104 is
de�ned as the fraction of correct classi�cations (N 0s for �0 < �c and N 1s for �0 > �c) over
104 ICs chosen at random from the unbiased distribution (each bit in the IC is independently
randomly chosen). As was mentioned above, these ICs all have �0 close to 1=2 and are thus
the hardest cases to classify; therefore, PN,104 gives a lower bound on other performance
measures. CA �par not only has signi�cantly higher performance than �exp for N = 149,
but its performance degrades relatively slowly as N is increased, whereas �exp's performance
drops quickly. As we describe in Das, Mitchell, and Crutch�eld 1994, �par's behavior is
similar to that of a CA designed by Gacs, Kurdyumov, and Levin (1978).

7

0

Time

148

148Site0 148Site0

Figure 4: Space-time diagrams for �par, a \particle-based" rule. In the left diagram, �0 < 1=2; in the right
diagram, �0 > 1=2. Both ICs are correctly classi�ed.

Analysis of Evolved CAs

In �gure 4 it can be seen that, under �par, there is a transient phase during which spatial
and temporal transfer of information about the density in local regions takes place. Roughly,
over short times, �par's behavior is locally similar to that of �maj in that local high-density
regions are mapped to all 1s, local low-density regions are mapped to all 0s, with a vertical
boundary in between them. This is what happens when a region of 1s on the left meets a
region of 0s on the right. However, there is a crucial di�erence from �maj: when a region
of 0s on the left meets a region of 1s on the right, rather than a vertical boundary being
formed, a checkerboard region (alternating 1s and 0s) is propagated. When the propagating
checkerboard region collides with the black-white boundary, the inner region (e.g., each of
the white regions in the right-hand diagram of �gure 4) is cut o� and the outer region is
allowed to propagate. In this way, the CA uses local interactions and geometry to determine
the relative sizes of adjacent large low and high density regions. For example, in the right-
hand space-time diagram, the large inner white region is smaller than the large outer black
region|thus the propagating checkerboard pattern reaches the black-white boundary on the
white side before it reaches it on the black side; the former is cut o�, and the latter is allowed
to propagate.

The black-white boundary and the checkerboard region can be thought of as \signals"
indicating \ambiguous" regions. The creation and interactions of these signals can be inter-
preted as the locus of the computation being performed by the CA|they form its emergent
\algorithm."

The above explanation of how �par performs the �c = 1=2 task is informal and incomplete.
Can we understand more rigorously how the evolved CAs perform the desired computation?
Understanding the products of GA evolution is a general problem|typically the GA is asked

8

148Site0148Site0

γ

η

β

δ

α

µ

Figure 5: (a) The right-hand spacetime diagram of �gure 4. (b) The same diagram with the regular
domains �ltered out, leaving only the particles (some of which are labeled by here by the Greek letter code
of table 2). Note that particle � (unlike other the other particles) lasts for only one time step, after which
it decays to particles
 and �.

to �nd individuals that achieve high �tness but is not told what traits the individuals should
have to attain high �tness. This is analogous to the di�culty biologists have in understanding
the products of natural evolution. In many cases, particularly in automatic-programming
applications (e.g., genetic programming, Koza 1992), it is di�cult to understand exactly how
an evolved high-�tness individual works. The problem is compounded in the case of cellular
automata, since the emergent computation performed by a given CA is determined by its
overall space-time behavior, and is thus almost always impossible to extract from the bits of
the rule table.

A more promising approach is to examine the space-time behavior exhibited by the CA
and to \reconstruct" from that behavior what the emergent algorithm is. Crutch�eld and
Hanson have developed a general method for reconstructing the \intrinsic" computation
embedded in space-time behavior in terms of \regular domains," \particles," and \particle
interactions" (Hanson and Crutch�eld, 1992; Crutch�eld and Hanson 1993). This method
is part of their \computational mechanics" framework for understanding computation in
physical systems (Crutch�eld, 1994). A detailed discussion of computational mechanics and
particle-based computation is beyond the scope of this paper. Very brie
y, regular domains
are regions of space-time consisting of words in the same regular language|in other words,
they are regions that are computationally homogeneous and simple to describe. E.g., in
�gure 4, there are three regular domains, corresponding to the regular languages 0�, 1�,
and (01)�. Particles are the localized boundaries between those domains. In computational
mechanics, particles are identi�ed as information carriers, and collisions between particles
are identi�ed as the loci of information processing. Particles and particle interactions form
a high-level language for describing computation in spatially extended systems such as CAs.
Figure 5 hints at this higher level of description: to produce it we �ltered the regular domains

9

Regular Domains
�0 = 0� �1 = 1� �2 = (01)�

Particles (Velocities)
� � �0�1 (0) � � �101�0 (0)

 � �0�2 (-1) � � �2�0 (-3)
� � �1�2 (3) � � �2�1 (1)

Interactions
decay �!
 + �
react � +
 ! �, �+ � ! �, � + � ! �

annihilate � + �! �1,
 + � ! �0

Table 2: Catalog of regular domains, particles (domain boundaries), particle velocities (in parentheses),
and particle interactions seen in �par's space-time behavior. The notation p � �x�y means that p is the
particle forming the boundary between regular domains �x and �y.

from the space-time behavior displayed in the right-hand diagram of �gure 4 to leave only
the particles and their interactions, in terms of which the emergent algorithm of the CA can
be understood. Table 2 gives a catalog of the relevant particles and interactions for �par.
In Crutch�eld and Mitchell (1995) and in Das (1996) we describe other particle-based rules
that were evolved by the GA for this task.

The application of computational mechanics to the understanding of rules evolved by the
GA is discussed further in Das, Mitchell, and Crutch�eld 1994, in Das, Crutch�eld, Mitchell,
and Hanson 1995, and in Crutch�eld and Mitchell 1995. In the �rst two papers, we used
particles and particle interactions to describe the evolutionary stages in which highly �t rules
were evolved by the GA. Figure 6 illustrates these stages (\epochs") for the GA run leading
to �par. Figure 6a plots the best �tness in the population over 50 generations, and labels
those generations in which a signi�cantly improved new strategy is discovered. The other
plots give space-time diagrams illustrating each of these strategies.

In generation 0 (Figure 6b), the best strategy is: \From any IC, immediately reach a
�xed point of all 1s." This trivial solution correctly classi�es half the IC sample (the half
with �0 > 1=2), yielding �tness 0.5. At generation 8, a CA with �tness 0.61 is discovered.
This CA quickly reaches the all-0s �xed point for very low-density ICs. For all other ICs
(e.g., the density 0.25 IC shown in the �gure) it expands very small regions of 1s to reach
the all-1s �xed point. The checkerboard pattern is produced when a white region on the left
meets a black region on the right, but in this CA the checkerboard pattern is \adaptively
neutral"|it does not contribute to the increase in �tness. In particular, if the rule table
of this CA is modi�ed so that the checkerboard pattern is no longer produced, the �tness
does not change. However, in later generations, by changing bits that a�ect the velocities
of particles, the GA shapes the checkerboard pattern so that it performs a useful function.
This type of phenomenon, in which a trait starts out being adaptively neutral but is later
shaped by evolution to have adaptive value, is known as \exaptation," and is hypothesized
by some evolutionary biologists to be an important component of evolution (e.g., see Gould
and Vrba, 1982).

In generations 13{18 (�gure 6c{f),the �par strategy described above is approached with
increasingly better approximations. For example, in generation 16, the particle forming the

10

Time

0

148

148Site0
generation 0

148Site0
generation 8

0

Time

148

148Site0
generation 13

0

Time

148

148Site0
generation 16

148Site0
generation 18

0

0.25

0.5

0.75

1

0 10 20 30 40 50

be
st

 f
itn

es
s

generations

8

13

16

18

(a) (b)

(c) (d)

(e) (f)

Figure 6: A partial evolutionary history of the GA run leading to �par: (a) F100 versus generation for the
most �t CA in each population. The arrows indicate the generations in which the GA discovered each new
signi�cantly improved strategy. (b){(f) Space-time diagrams illustrating the behavior of the best � at each
of the �ve generations marked in (a). The ICs were chosen to illustrate particular space-time behaviors.

11

Site0 74Site0 74

0

74

T
im

e

(a) (b)

Figure 7: (a) Space-time diagram illustrating the behavior of a CA evolved by the GA to perform the
synchronization task. The initial condition was generated at random. (b) The same space-time diagram
after �ltering out regular domains.

black-white boundary has velocity 1=2, which means that in some cases the white region
will get cut o� before the black region even when the white region is larger (the expanding
black region will encroach on it). In generation 18 the GA has corrected this problem|the
black-white boundary has zero velocity, yielding a higher �tness. (A more detailed analysis
of these evolutionary epochs is given in Das, Mitchell, and Crutch�eld 1994 and in Das,
1996.)

In Das, Crutch�eld, Mitchell, and Hanson, 1995, we described a similar analysis for a
global synchronization task. The goal for the GA was to �nd a CA that, from any IC,
produces a globally synchronous oscillation between the all-1s and all-0s con�gurations.
(This is perhaps the simplest version of the emergence of spontaneous synchronization that
occurs in decentralized systems throughout nature.) Figure 7 illustrates the behavior of one
CA evolved by the GA to perform this task, given both as a space-time diagram and as
a �ltered version of that diagram which reveals the embedded particles. Again, tools of
computational mechanics allowed us to understand the computational strategy of this CA in
in the higher-level language of particles and particle interactions as opposed to the low-level
language of CA rule tables and raw spatial con�gurations.

Conclusions

The GA's discoveries of rules such as �par and of rules that produce global synchronization
is signi�cant, since these are the �rst examples of a GA's producing sophisticated emergent
computation in decentralized, distributed systems such as CAs. These discoveries are encour-
aging for the prospect of using GAs to automatically evolve computation for more complex

12

tasks (e.g., image processing or image compression) and in more complex systems; these are
the subjects of current work by our group. Moreover, evolving CAs with GAs also gives us
a tractable framework in which to study the mechanisms by which an evolutionary process
might create complex coordinated behavior in natural decentralized distributed systems. For
example, we have already learned how the GA's breaking of symmetries can lead to subop-
timal computational strategies (Mitchell, Crutch�eld, and Hraber 1993); eventually we may
be able to use such models to test ways in which such symmetry breaking might occur in
natural evolution. In general, models such as ours can provide insights on how evolutionary
processes can discover structural properties of individuals that give rise to improved adapta-
tion. In our case, such structural properties|regular domains and particles|were identi�ed
via the computational mechanics framework, and allowed us to analyze the evolutionary
emergence of sophisticated computation.

Acknowledgments

This research was supported by the Santa Fe Institute, under the Adaptive Computation and
External Faculty Programs and under NSF grant IRI-9320200 and DOE grant DE-FG03-
94ER25231. It was supported by the University of California, Berkeley, under the ONR
Dynamical Neural Systems Program and AFOSR grant 91-0293.

References

B�ack, T., Ho�meister, F., and Schwefel, H.-P. 1991. A survey of evolution strategies. In R.
K. Belew and L. B. Booker, eds., Proceedings of the Fourth International Conference
on Genetic Algorithms, 2{9. San Francisco, CA: Morgan Kaufmann.

Berlekamp, E., Conway, J. H., and Guy, R. 1982. Winning Ways for Your Mathematical
Plays, volume 2. New York: Academic Press.

Crutch�eld, J. P. 1994. The calculi of emergence: Computation, dynamics, and induction.
Physica D 75: 11-54.

Crutch�eld, J. P., and Hanson, J. E. 1993. Turbulent pattern bases for cellular automata.
Physica D 69: 279{301.

Crutch�eld, J. P., and Mitchell, M. 1995. The evolution of emergent computation. Proceed-
ings of the National Academy of Sciences, USA, 92 (23): 10742.

Das, R. 1996. The Evolution of Emergent Computation in Cellular Automata. Ph.D. Thesis,
Computer Science Department, Colorado State University, Ft. Collins, CO.

Das, R., Crutch�eld, J. P., Mitchell, M., and Hanson, J. E. 1995. Evolving globally synchro-
nized cellular automata. In L. J. Eshelman, ed., Proceedings of the Sixth International
Conference on Genetic Algorithms, 336{343. San Francisco, CA: Morgan Kaufmann.

Das, R., Mitchell, M., and Crutch�eld, J. P. 1994. A genetic algorithm discovers particle-
based computation in cellular automata. In Y. Davidor, H.-P. Schwefel, and R.

13

M�anner, eds., Parallel Problem Solving from Nature|PPSN III, 244-353. Berlin:
Springer-Verlag (Lecture Notes in Computer Science, volume 866).

Gacs, P., Kurdyumov, G. L., and Levin, L. A. 1978. One-dimensional uniform arrays that
wash out �nite islands. Problemy Peredachi Informatsii 14: 92{98 (in Russian).

Gould, S. J., and Vrba, E. S., 1982. Exaptation: A missing term in the science of form.
Paleobiology 8: 4{15.

Hanson, J. E., and Crutch�eld, J. P. 1992. The attractor-basin portrait of a cellular au-
tomaton. Journal of Statistical Physics 66, no. 5/6: 1415{1462.

Hillis, W. D. 1990. Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D 42: 228{234.

Koza, J. R. 1992. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press.

Land, M., and Belew, R. K. 1995. No perfect two-state cellular automata for density classi-
�cation exists. Physical Review Letters 74 (25): 5148.

Mitchell, M., Crutch�eld, J. P., and Das, R. (In press). Evolving cellular automata to
perform computations. In B�ack, T., Fogel, D., and Michalewicz, Z. (Eds.), Handbook
of Evolutionary Computation. Oxford: Oxford University Press.

Mitchell, M., Crutch�eld, J. P., and Hraber, P. T. 1994. Evolving cellular automata to
perform computations: Mechanisms and impediments. Physica D 75: 361{391.

Mitchell, M., Hraber, P. T., and Crutch�eld, J. P. 1993. Revisiting the edge of chaos:
Evolving cellular automata to perform computations. Complex Systems 7, 89{130.

Packard, N. H. 1988. Adaptation toward the edge of chaos. In J. A. S. Kelso, A. J. Mandell,
M. F. Shlesinger, eds., Dynamic Patterns in Complex Systems, 293{301. Singapore:
World Scienti�c.

Richards, F. C., Meyer, T. P., and Packard, N. H. 1990. Extracting cellular automaton rules
directly from experimental data. Physica D 45: 189{202.

Wolfram, S. 1986. Theory and Applications of Cellular Automata. Singapore: World Scien-
ti�c.

14

